

Acknowledgements

The best projects are the result of collaboration, and l'd like to express my appreciation to the teachers below who reviewed Exploring Perimeter and/or used some of the activities with their students. Thanks to Stacy Kasse, Maia Dobson, Marie Roberts, Jo Ann Mumford, Kathleen Wilderman, Mary Robertson, Ann Bullard, Kristie Horst, and Kelli Newman!

Copyright Notice

© 2013 by Laura Candler. All rights reserved.

These materials are provided in digital format, but the copyright restrictions are similar to those placed on educational print materials. If you purchased this item,
 you may reproduce the printables as needed for your own classroom use. You may also save a backup file for your own use. However, no part of this publication may be reproduced inany form, by any means, electronic or mechanical, without prior written permission from Laura Candler. It may not be shared with others or posted online in a location that others may access. Visit www.lauracandler.com to purchase additional copies or contact to Laura Candler.
Thanks for understanding!

Clipart and Graphic Design Credits

Krista Walden
http://www.teacherspayteachers.com/Store/Krista-Wallden

Exploring Perimeter

Contents and Intro

Table of Contents
Common Core Connections 5
Toothpick Perimeters 6
Geoboard Perimeters 9
Perimeter Count Around 11
Measuring on a Grid 13
Perimeter Power Game 16
Comparing Gardens 19
Perimeter Partners 24
Tangram Perimeters 26
Calculating Perimeters 30
Missing Side Perimeters 33Mystery PerimetersFinding FormulasPerimeter ProblemsBlank Grids and Geoboard
Developing Perimeter Concepts
Perimeter is one of the simplest geometry concepts toteach, but when combined with instruction on area it can prove to beextremely confusing. When students are taught to memorize formulaswithout having time to develop-a deep understanding, they will almost certainly havedifficulty distinguishing area from perimeter. This book provides numerous quick andeasy hands-on activities to develop the concept of perimeter as linear measurementbefore you introduce area concepts.

Perimeter is simply the distance around an object. The concept holds true whether you measure that distance in toothpicks, jelly beans, inches, feet, centimeters, meters, or miles. In order to develop the concept fully, students need to count units around an object, measure objects to find perimeter, add or multiply the lengths of sides, and determine formulas for finding the perimeter of squares and rectangles. Finally, they need to apply the concept of perimeter to real world problems.

Common Core Connections

The activities in this Power Pack offer a sequential approach to teaching perimeter and are presented in their order of difficulty. From simple hands-on experiences with toothpicks to the development of formulas, you'll find a variety of activities to meet your needs. Use whatever is appropriate for your students. Even though the concept of perimeter only appears in the Common Core State Standards for third and fourth grades, perimeter may be introduced earlier as a part of a linear measurement unit.

Exploring Perimeter

Power Pack Suggestions

These concepts are also important in solving word problems at fifth grade and above. Therefore, some of the activities in this ebook aren't directly correlated with a specific Common Core Standard. Refer to the chart on the next page for the correlations that do exist in this Power Pack.

How to Use this Power Pack

Each activity is preceded by a teacher page that provides helpful information for planning. Check out the sample page below for information about each component. Don't feel you need to teach every lesson in this book; choose only the activities that meet your needs. Many of the lessons include variations of the same printable, one using inches and the other using centimeters, so review them carefully before including them in a lesson. Many activity pages are designed to be projected onto an interactive whiteboard, while others can be used as games for reviewing concepts. To save paper, laminate the activity pages and use them in math centerswith dry erase markers. Be sure to engage students actively with cooperative learning and hands-on materials like geoboards and rulers. Most of all, enjoy these, lessons and have fun as your students explore perimeter!

Exploring Perimeter

Common Core Connections

Activity	Targeted Skills	CCSS
Toothpick Perimeters	Exploring the linear nature of perimeter; counting perimeter units	n/a
Geoboard Perimeters	Exploring the linear nature of perimeter; counting perimeter units	
Perimeter Count Around	Counting perimeter units on a grid	
Measuring on a Grid	Measuring with a rulerto	3.MD.B. 4
Perimeter Power Game	Measuring or counting to find perimet	3.MD.B. 4
Comparing Gardens	easuring to find perimeter; calculating d comparing perimeters	$\begin{aligned} & \text { 3.MD.B.4, } \\ & \text { 3.MD.D. } 8 \end{aligned}$
Perimeter Partn	Measuring to find perimeter of real objects	3.MD.B. 4
	Calculating perimeters of polygons and artwork created with polygons	3.MD.B. 4
	Calculating perimeters of polygons with given dimensions	3.MD.D. 8
Missing Side Perimeters	Determining the lengths of unlabeled sides in order to calculate perimeter	3.MD.D. 8
Mystery Perimeters	Determining the lengths of unlabeled sides in order to calculate perimeter	3.MD.D. 8
Finding Formulas	Developing the formula for finding the perimeters of squares and rectangles	$\begin{aligned} & \text { 3.MD.D.8, } \\ & \text { 4.MD.A. } 3 \end{aligned}$
Perimeter Problems	Solving word problems that require application of perimeter concepts	$\begin{aligned} & \text { 3.MD.D. } 8, \\ & \text { 4.MD.A. } 3 \end{aligned}$

Exploring Perimeter

Toothpick Perimeters

Targeted Skill

Developing the concept of perimeter as a linear unit

Overview

If your students have never studied perimeter, these activities are a good place to start. Fencing Barnyards and Cow Pasture Perimeters both require students to place toothpicks around barnyards to visually show perimeter as linear units.

Directions

1. Distribute one Fencing Barnyards worksheet to each student or pair of students. Place a pile of toothpicks in the middle of each team.
2. Review the student directions and introduce the word "perimeter." Have students place toothpicks, end to end around the outside edges of the barnyards to find the perimeters. You may want them to glue the toothpicks in place.
3. Remind students to record the perimeters on the lines provided.
4. Repeat with Cow Pasture Perimeters

Laura's Tips

Extensions

- Have students create their own barnyards from construction paper. Increase the difficulty level by having them create barnyards with specific perimeters.

The toothpicks used in this activity are $25 / 8$ inches long. You'll need to test out your toothpicks with the activity in advance. If they are not exactly the right size, ask your students to "round off" to the nearest toothpick. Or you can substitute some other linear object such as pretzel sticks, straws, pipe cleaners, or Wikki sticks cut to the right length.

Use a rug or sheet of bulletin board paper to create a large "barnyard" in your classroom. Have students place 12 " rulers end-to-end to create a "fence" around the barnyard. Count the rulers to find the length of the perimeter in feet.

Answers

- Chicken Coop - 4
- Horse Pasture - 6
- Cow Pasture - 10

Exploring Perimeter

Geoboard Perimeters

Targeted Skill

Exploring the concept of perimeter as linear measurement

Overview

This activity is excellent for visual-spatial learners, as well as students who need hands-on experiences. Students are asked to stretch rubber bands around the pegs of a geoboard to create models of the polygon illustrations on the worksheet. Then they count the units around the shape and record the perimeter on the worksheet. You may also have students use a ruler and determine the actual measurement with a standard measurement system.

Directions

1. Distribute geoboards and two or three rubber bands to each student. Allow them to have a few minutes to play and explore how to use the geoboard to create shapes.
2. Demonstrate how to create a shape on the geoboard and tell students that the distance around the shape is called its perimeter. Tell them that the distance between two pegs is one unit of measurement. Show them how to "pluck" the rubber band between each two pegs to count the perimeter.
3. Give each student or pair of students a copy of the Geoboard Perimeters worksheet. Show them how to create a modet of the first shape using the rubber bands on their geoboards.
4. After creating the shape on their geoboards, have them count around to find the
 perimeter and record that number on the worksheet above the polygon.
5. Check their responses for the first polygon and then allow them to finish at their own pace.
6. If you want to create more Geoboard Perimeter activities, use the printable on page 61.

Laura's Tips

Many students will have trouble recreating the polygon illustrations on their geoboards. It may help to have them visualize a coordinate grid and label the X and Y axes with numbers. Then have them notice the points where the rubber band is looped around a peg, such as point $(2,3)$. You can also pair them with a partner and have them help each other with this task.

Extensions

- Measurement - Have students measure the distance around each polygon with a ruler instead of counting units. Centimeters are usually easier to use than inches because they eliminate the need for fractional units.
- Create Your Own - Allow students to create their own shapes on their geoboards. Then have them transfer their models to paper.
- Virtual Geoboards - Use the free virtual geoboard from www.mathplayground.com to demonstrate and explore perimeter.

Answers

\#1-8, \#2-12, \#3-10, \#4-14,
\#5-12, \#6-12

Exploring Perimeter

Perimeter Count Around

Targeted Skill

Finding perimeter by counting units around polygons on a grid

Materials

- Perimeter Count Around activity page (p. 12)
- Pencils
- Centimeter Rulers (optional)

Directions

1. Review the definition of perimeter with your students. Give each student or pair of students a Perimeter Count Around worksheet.
2. Display a copy of the worksheet on an overhead projector or interactive whiteboard. Demonstrate how to count the number of units on each side of a polygon. Have students label each side with the number of units.
3. Ask students to count up the total units and write the perimeter inside each polygon.
4. If students are working with a partner, have them take turns with the activity. The first person counts the units and labels the lengths) each side. The other person-adds the lengths and writes the perimeter in the figure. Have them switch roles for each figure

Extensions

- Metric Measurement - Each unit is 1 cm square, so this activity can be used to introduce ruler measurement. Show students how to measure the length of each side with a centimeter ruler.
- Create and Trade - Give students centimeter grid paper and a ruler. Allow them to create their own polygons and trade with a partner to find the perimeter. Tell them not to draw lines diagonally across the squares because the diagonals are not the same length as the sides of the squares.

Answers

\#1-16, \#2-16, \#3-14, \#4-12,
\#5-16, \#6-20, \#7-18, \#8-20

Exploring Perimeter

Measuring on a Grid

CCSS 3.MD.B. 4

Targeted Skill

Finding perimeter by counting units on a grid; developing standard measurement concepts

Overview

In this activity, students will find the perimeter of various polygons by measuring with a ruler. They can verify their work by counting units.

Directions

1. Begin with the inch grid which is easier because the numbers are smaller. If your students don't know how to use a centimeter ruler, you may want to skip the centimeter grid version of the activity.
2. Demonstrate how to use a ruler to measure the length of each side on the first rectangle. Show students how to label the length and width and add to find the perimeter. Write the perimeter in the interior of the rectangle.
3. Show students how to verify their measurements by counting the number of units around the shape.
4. Have students complete the rest of the worksheet on their own.
5. Check their answers and have them complete the second worksheet as needed for additional practice.

Extension Activity

Create and Trade - Give students blank grid paper and a ruler. You can find blank grids in different sizes at the back of this packet. Allow students to create their own polygons and trade with a partner to find the perimeter. Tell them not to draw lines diagonally across the squares because the diagonals are not the same length as the sides of the squares.

Answers

- Inch Grid (page 14) \#1-10, \#2-12, \#3-14, \#4-14
- Centimeter Grid (page 15)
\#1-16, \#2-20, \#3-14, \#4-12,
\#5-20, \#6-32, \#7-22

Measuring on a Grid

\qquad

Use a ruler to measure each shape. Label each side and find the perimeters in inches.

1						

\qquad

Use a ruler to measure each shape. Label each side and find the perimeters in centimeters.

1	1						2						
													1
													,
3	3									5	-	T	
					4					-	-		
								,	7	J			
								\checkmark					
						1	,						
						\cdots							
										7			
		,	\checkmark										

Exploring Perimeter

Perimeter Power Game

CCSS 3.MD.B. 4

Targeted Skill

Finding perimeter by counting or measuring units on a grid; developing standard measurement concepts

Overview

In this game, students will take turns with a partner rolling dice to determine the dimensions of squares and rectangles to draw on a grid. They will count and/or measure to determine the perimeter of each polygon, scoring one point for each unit or centimeter.

Centimeters versus Units

The basic directions refer to the units on the board as centimeters. However, if your students are not yet familiar with a centimeter ruler, they can simply count the units around the rectangle.

Directions

1. Display the game directions and a game board, and choose a student from the class to play against as you demonstrate the game. Remind students that they should be checking each other's work as thex play.
2. Decide how you want to handle errors and explain your rules to your students. Are they allowed to correct errors found by their partner and count those points, or do they lose the furn?
3. Before distributing materials to the class, pair each student with a partner, making sure that at least one student in each pair is able to measure and/or count to find perimeter.
4. Provide time for students to play several rounds of the game. You may want
 to let them switch partners after each round.

Laura's Tip

If students roll the same number on both dice, they will end up drawing a square. Students may feel they have to roll again since it's not a "rectangle," but remind them that a square is actually a type of rectangle.

Extension Activities

- Perimeter Power in Inches - To play the game on an inch grid, print off two copies of the grid on page 50. Tape them together so that the grids line up and match. The same rules apply.
- Area Power - After you introduce area concepts, students can play the game again recording the area of each square or rectangle.
- Island Conquer Game - Island Conquer is a free game similar to Perimeter Power. Instead of rolling dice, students draw out cards that have coordinate graphing points to designate where the squares and rectangles are placed. You can download this freebie from the Math File Cabinet on Teaching Resources at www.lauracandler.com.

Perimeter Power

Player 1 \square
Player 2

Exploring Perimeter

Comparing Gardens

CCSS 3.MD.B. 4 and 3.MD.D. 8

Targeted Skill

Estimating and comparing perimeters; understanding real world applications of perimeter; interpreting scale drawings

Overview

Comparing Gardens provides an opportunity to estimate and compare the perimeters of polygons in both inches and centimeters. By using the polygons to represent gardens, students will begin to discover real life applications of perimeter concepts. Each activity page comes in two formats that are drawn to different scales.

Directions

1. Display a copy of Vegetable Garden Fences 1 and distribute a copy to each student. Ask them to predict which garden has the shortest and longest fence and to write the names of the gardens in the appropriate boxes on the chart.
2. Then ask students to measure the length and width of the gardens and add the numbers to find their perimeters. Remind them that one inch represents one foot.
3. After they have measured all four gardens, have them write the names of the gardens with the longest and shortest fences in the appropriate boxes. Discuss predications and actual results.
4. Next, introduce Vegetable Garden Fences 2 and ask students to notice the scale, which is 1 inch $=2$ yards. Demonstrate how to
 measure a rectangle in inches and convert the measurement to yards when the scale is 1 to 2 . Complete the rest of the assignment as in steps 1 through 3.
5. If students need additional practice, have them complete both Flower Garden Fences activities.

Supporting Activity

Check with Grids - If students are having trouble making the transition from the grid to the ruler alone, make clear transparencies of the grids on pages 59 and 60 . Allow students to use them as overlays to check their answers.

Answers

- Vegetable Garden Fences 1 - Tomatoes 10 ft , Beans 10 ft , Pumpkins 8 ft , Corn 12 ft
- Vegetable Garden Fences 2 - Tomatoes 20 yd, Beans 24 yd, Pumpkins 32 yd, Corn 16 yd
- Flower Garden Fences 1 - Daffodils 34 m, Daisies 26 m , Sunflowers 36 m , Roses 22 m
- Flower Garden Fences 2 - Daffodils 60 m , Daisies 56 m, Sunflowers 48 m , Roses 52 m
\qquad

Each vegetable garden below is drawn to scale. One inch represents one foot. Which garden has the shortest fence? Which one has the longest fence? In the prediction boxes below, record the names of the gardens that you think will have the shortest and longest fences. Then measure to find the actual perimeter of each garden.

Which Fence?	Prediction	Actual
Shortest Length		
Longest Length		

Vegetable Garden Fences 2

Name \qquad

Each vegetable garden below is drawn to scale. One inch represents two yards. Which garden has the shortest fence? Which one has the longest fence? In the prediction boxes below, record the names of the gardens that you think will have the shortest and longest fences. Then measure to find the actual perimeter of each garden.

Which Fence?	Prediction	Actual
Shortest Length		
Longest Length		

\qquad

Each flower garden below is drawn to scale. One centimeter represents one meter. Which garden has the shortest fence? Which one has the longest fence? In the prediction boxes below, record the names of the gardens that you think will have the shortest and longest fences. Then measure to find the actual perimeter of each garden.

Which Fence?	Prediction	Actual
Shortest Length		
Longest Length		

Flower Garden Fences 2

\qquad

Each flower garden below is drawn to scale. One centimeter equals two meters. Which garden has the shortest fence? Which one has the longest fence? In the prediction boxes below, record the names of the gardens that you think will have the shortest and longest fences. Then measure to find the actual perimeter of each garden.

Which Fence?	Prediction	Actual
Shortest Length		
Longest Length		

Sunflowers
Perimeter $=$ \qquad

Daffodils
Perimeter $=$ \qquad

Perimeter Partners

Targeted Skill

Measuring with a ruler to the nearest inch, half inch, or centimeter

Overview

Students will select 5 objects to measure and will calculate and record the perimeter of one face of each object. Then they will trade papers with a partner and check each other's answers.

Directions

1. Pair each student with a partner. Make sure at least one person in each pair is proficient with using a ruler to measure length.
2. Duplicate copies of the Perimeter Partners worksheet and cut them in half. Give each person his or her own copy of the half-sheet page.
3. Gather a collection of objects that have at least one face suitable for
measuring. (For example: math book, tissue box, box of crayons, etc.)
4. Demonstrate how to measure the length and width of one face
object to determine its perimeter. Show students how to record object's description (i.e., top cover of math book), the length of each side, and its perimeter. Be sure to let them know whether to measure to the nearest inch, half inch, or centimeter.
5. Ask students to work with their partner to select 5 objects to measure. After they measure all 5 objects and record their measurements, they compare results. Remind them that it doesn't matter the order that they record the measurements ofeach side, they only need to compare total perimeters. If the perimeters are more than $1 / 2$ inch or 1 cm different,

$$
\text { CCSS 3.MD.B. } 4
$$

partner
 they need to remeasure together to find the actual perimeter.

Laura's Tips

If you feel your students will have difficulty with this activity, find several practice objects and list them on a copy of the worksheet. Place the objects in a math center have students work with a partner to measure them and determine their perimeters. You can also ask students to draw a copy of each object on the back of their papers so they can record each object's length and width before adding the dimensions.

Extensions

- Perimeter Predictions - After your students have completed the activity once, have them repeat the activity but add one more step. Prior to measuring each object, ask students to predict the total perimeter and write the number next to the name of the item. If they are working with a partner, ask them to show their prediction to their partner before they actually measure the object. This step will keep them honest! Challenge them to increase their accuracy as they complete the assignment.
- Area Partners - After you introduce the concept of area to your students, have them repeat the activity and find the area of one face of each object.

Perimeter Partners

\qquad
\qquad
Work with your partner to choose 5 rectangular items that you can measure easily using a ruler. Record each object in the same order on the chart below. Measure and record the lengths of the sides of one face of each object. Calculate the total perimeter of that face and record it. Finally, trade papers with your Perimeter Partner and compare your perimeters. If your measurements are not the same, work together to remeasure the object. Suggested items: chapter book cover, paper, desktop, binder, calculator, bottom of tissue box, composition book, etc.

Item Descriptions	Side 1	Side 2	Side 3	Side 4	Perimeter
1.					
2.					
3.					
4.					
5.					

Perimeter Partnees

My Name \qquad
My Partner \qquad
Work with your partner to choose 5 rectangular items that you can measure easily using a ruler. Record each object in the same order on the chart below. Measure and record the lengths of the sides of one face of each object. Calculate the total perimeter of that face and record it. Finally, trade papers with your Perimeter Partner and compare your perimeters. If your measurements are not the same, work together to remeasure the object. Suggested items: chapter book cover, paper, desktop, binder, calculator, bottom of tissue box, composition book, etc.

Item Descriptions	Side 1	Side 2	Side 3	Side 4	Perimeter
1.					
2.					
3.					
4.					
5.					

Exploring Perimeter

Tangram Perimeters

Targeted Skill

Calculating perimeters of polygons and artwork created with polygons

Overview

In this activity, students first learn a little about tangrams and then measure to find the perimeter of each piece in centimeters. Next, they create tangram art with three or four pieces and find its perimeter.

Directions

1. If your students have not used tangrams before, give each child a complete set of 7 tangrams or the pattern on page 27 to cut out. Allow a little time for students to explore.
2. Use a ruler to demonstrate how to measure around one of the large triangles and calculate the perimeter. When you measure each side, round it to the nearest centimeter and record it on scrap paper dry erase board, then add to find the total. Have students repe your steps with the remaining tangram pieces and fill out the cha at the top of page 27. Check their work before continuing.
3. Next, explain that the ancient Chinese enjoyed using tangram pieces to create artwork in the form of shapes that looked like objects. Show the 2 examples on page 28 and ask students to tell you what the shapes look like. Point out how the shapes are arranged so that the sides are touching but not overlapping
4. Finally challenge students to create their own artwork with three or
 four pieces (no more). Have them trace the shape inside the Tangram Art frame (page 29). Then ask them to measure the length of each side to the nearest centimeter, label it with the length, and then add to find the perimeter. Demonstrate with your own example. They are only fipding the perimeter of the outside of the shape and not each piece.

Additional Suggestions

- Guided Math Groups - Students will probably need a lot of guidance with this activity. You may want to complete it in small guided math groups. Restrict students to just three pieces for their first attempts.
- Coloring the Artwork - When students trace their pieces, they will probably want to color their artwork as well. If so, have them trace the outside of the shape with a dark line to identify the perimeter.
- Read Grandfather Tang's Story to your students. The story is told with tangrams forming the various characters, and children enjoy recreating the shapes with their own tangrams.
\qquad

A tangram is an ancient puzzle made of exactly 7 pieces. The pieces fit together to make a square, but they can also be arranged to make other shapes such as animals or objects.

For this activity, use commercial tangrams or carefully cut out the pieces below. Be sure to cut exactly on the lines so that the pieces will fit together properly. Use a centimeter ruler to measure the perimeter of each piece and record it on the chart. Then use three or four pieces to create your own tangram art. Trace your shape inside the frame on the Tangram Art page. Measure each side and add to find the total perimeter of your artwork.

Tangram Pieces	Perimeter
Large triangles	
Medium triangle	
Small triangles	
Square	
Parallelogram	

Tangram Art with 7 Shapes

Tangram Art

\qquad

Exploring Perimeter

Calculating Perimeters

CCSS 3.MD.D. 8

Targeted Skill

Calculating perimeters of polygons with given dimensions

Overview

This activity provides an opportunity for students to calculate perimeters when given the lengths of the sides.

Directions

1. Give each student a copy Polygon Perimeters.
2. Demonstrate how to calculate the perimeter of a polygon by adding the lengths of the sides. Remind students to include the unit of measurement in their answers. This activity does not involve measuring the sides, so students don't need a ruler.
3. Provide time for students to complete the worksheet and circulate around the room checking their work.
4. For those students who need more of a challenge, offer the Polygon Challenges activity which involves addition of fractions and decimals. Allowing students to use a calculator is helpful.

Laura's Tips

To save paper, have students work with a partner. Print half as many pages and have students take turns completing the problems. After each student completes one problem, his or her partner checks the work before moving to the next problem.

You may need to review abbreviations for the units of measurement used in this activity.

Answers

- Polygon Perimeters (page 31) \#1-18 ft, \#2-20 in, \#3-36 in, \#4-32 yd, \#5-36 in, \#6-19 cm, \#7-18 in, \#8-20 ft
- Perimeter Challenges (page 32) \#1-20.4 m, \#2-20 cm, \#3-33 yd, \#4-31.2 m, \#5-34 in, \#6-50 cm, \#7-19 in, \#8-22.5 m
\qquad

Find the perimeter of each polygon and write it on the line.

Perimeter Challenges

\qquad

Find the perimeter of each polygon and write it on the line.

Targeted Skill

Determining the lengths of unlabeled sides and unknown perimeters

Overview

Missing Side Perimeters is a 2-part lesson. The first activity asks students to find the length of a missing side when given the total perimeter. The second activity requires students to apply knowledge of polygon properties to find the missing side lengths and to find the perimeter.

Directions

1. Begin with What's the Missing Length? Demonstrate how to find the length of each missing side. This is easy to do by adding the side lengths that are given and subtracting the total from the perimeter.
2. As students work on the assignment, circulate around the room and check to be sure they are responding correctly.
3. After the assignment is completed, review the answers together and ask students if they noticed any patterns. They may have noticed that it's easy to find the length of a missing side on a regular polygon because the sides are congruent.
4. Display a copy of Puzzling Perimeters. Point out the perimeters are not given, so students can't use subtraction to find the missing side lengths. Also, some of the polygons have several sides that are not labeled. Instead, they will need to use their knowledge of polygon properties to determine the lengths of the missing sides and then add to find the perimeters.
5. Distribute the worksheets and monitor students carefully as they work. Check answers when finished.

Variation

Polygons with Hash Marks - Some teachers introduce hash marks as a way of indicating that the sides of a polygon that are congruent. If your students understand the meaning of hash marks, you can use the variation of Puzzling Perimeters on page 36 instead of the one on page 35. The answers are the same.

Answers

- What's the Missing Length? (page 34) \#1-9 ft, \#2-4 in, \#3-4 ft, \#4-5 in, \#5-5 in, \#6-7 cm, \#7-6 cm, \#8-8 yd
- Puzzling Perimeters (pages 35 and 36) $\# 1-S=4,8 \mathrm{ft}, \mathrm{P}=24$, \#2 $-\mathrm{S}=3 \mathrm{in}, \mathrm{P}=12 \mathrm{in}$, $\# 3-S=7 \mathrm{ft}, \mathrm{P}=28 \mathrm{ft}, \# 4-S=9,7 \mathrm{ft}$, $P=32 \mathrm{ft}, \# 5-S=4 \mathrm{in}, \mathrm{P}=14 \mathrm{in}, \# 6-S=5 \mathrm{in}$, $P=30 \mathrm{in}, \# 7-S=8 \mathrm{~cm}, P=31 \mathrm{~cm}$ $\# 8-S=9,7$ yd, $P=42$ yd

What's the Missing Length?

\qquad

Figure out the length of each missing side and label it with the correct unit of measurement.

1

$$
?=
$$

\qquad

6

7

8

\qquad

Figure out the length of the missing sides and label them. Then find the perimeter of each polygon.

\qquad
With Hash Marks
Figure out the length of the missing sides and label them. Then find the perimeter of each polygon.

Exploring Perimeter

Mystery Perimeters

CCSS 3.MD.D. 8

Targeted Skill

Determining the lengths of unlabeled sides of irregular polygons in order to calculate perimeter

Overview

The Mystery Perimeters lesson involves using logical reasoning to find out the lengths of irregular polygons. There are two forms of the activity, one using inches (pages 38 to 42) and one using centimeters (pages 43 to 47). The directions are the same for both lessons.

Directions

1. Start with the Mystery Perimeters Demo on page 38 and display it on an interactive whiteboard or projector. Ask students how they might be able to figure out the lengths of the missing sides. Discuss options.
2. If your class is ready for logical reasoning, use the Mystery Perimeters Demo Hints page to show them how to divide each polygon into three rectangles and use addition or subtraction to find the missing side lengths. If they find this method confusing, they can use a ruler to measure the sides in inches.
3. To check answers, display the Mystery Perimeters Demo Answers on page 40 . The grid is a visual confirmation of the side lengths.
4. Assign the Mystery Perimeters worksheet on page 41 (no grid) or 42 (with the grid). If students are having difficulty, allow them to work with a partner and discuss s
5. For more practice, repeat the activity using the Mystery Perimeters lesson with centimeters for the unit of measurement (pages 43-47).

Laura's Tips

To help students identify the opposite horizontal and vertical parallel sides, have them color code the lines. For example, they can outline all of the horizontal lines in blue and the vertical lines in green. When using addition or subtraction to find the missing side lengths, they will be able to focus on just the lines in a particular color. (Thanks to Joy Darden for this tip!)

Supporting Activity

Floor Tile Perimeters - Use square floor tiles to teach perimeter. Create a large irregular polygon made of 2 rectangles like the ones in this lesson. Mark the dimensions of a few of the sides using the length of one tile as a unit. Show the polygon to your students and ask them to figure out the missing lengths. Place polygon on the floor and line up with the tiles to check.

Answers

- Mystery Perimeters (Inches - pages 41 \& 42)
$\# 1-S=2$ in and $3 \mathrm{in}, \mathrm{P}=18$ in
$\# 2-S=4$ in and $4 \mathrm{in}, \mathrm{P}=20$ in
- Mystery Perimeters (Cm - pages 46 \& 47)
$\# 1-S=4 \mathrm{~cm}$ and $4 \mathrm{~cm}, \mathrm{P}=30 \mathrm{~cm}$
$\# 2-\mathrm{S}=4 \mathrm{~cm}$ and $4 \mathrm{~cm}, \mathrm{P}=28 \mathrm{~cm}$
$\# 3-S=3 \mathrm{~cm}$ and $4 \mathrm{~cm}, \mathrm{P}=28 \mathrm{~cm}$
$\# 4-\mathrm{S}=7 \mathrm{~cm}, 4 \mathrm{~cm}, 2 \mathrm{~cm}, \mathrm{P}=38 \mathrm{~cm}$

Mystery Perimeters Demo

Detective Dianne discovered the sketches below and needs to find the perimeter of each polygon. However, some of the dimensions are not labeled. Can you help her find the missing dimensions? You may use logical reasoning or manipulatives such as a ruler or square inch tiles to help you solve the mystery. Then calculate and record the total perimeter of each polygon.

Mystery Perimeters Demo Hints

Detective Dianne discovered the sketches below and needs to find the perimeter of each polygon. However, some of the dimensions are not labeled. Can you help her find the missing dimensions? You may use logical reasoning or manipulatives such as a ruler or square inch tiles to help you solve the mystery. Then calculate and record the total perimeter of each polygon.

Imagine the polygon divided into rectangles. What is the length of each segment?

Mystery Perimeters Demo Answers

Detective Dianne discovered the sketches below and needs to find the perimeter of each polygon. However, some of the dimensions are not labeled. Can you help her find the missing dimensions? You may use logical reasoning or manipulatives such as a ruler or square inch tiles to help you solve the mystery. Then calculate and record the total perimeter of each polygon.

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\qquad
Detective Dianne discovered the sketches below and needs to find the perimeter of each polygon. However, some of the dimensions are not labeled. Can you help her find the missing dimensions? You may use logical reasoning or manipulatives such as a ruler or square inch tiles to help you solve the mystery. Then calculate and record the total perimeter of each polygon.

5 in

\qquad
Detective Dianne discovered the sketches below and needs to find the perimeter of each polygon. However, some of the dimensions are not labeled. Can you help her find the missing dimensions? You may use logical reasoning or manipulatives such as a ruler or square inch tiles to help you solve the mystery. Then calculate and record the total perimeter of each polygon.

Mystery Perimeters Demo

Detective Dave discovered the sketches below and needs to find the perimeter of each polygon. However, some of the dimensions are not labeled. Can you help him find the missing dimensions? You may use logical reasoning or manipulatives such as a ruler, Cuisenaire rods, or centimeter cubes to help you solve the mystery. Then calculate and record the total perimeter of each polygon.

Mystery Perimeters Demo Hints

Detective Dave discovered the sketches below and needs to find the perimeter of each polygon. However, some of the dimensions are not labeled. Can you help him find the missing dimensions? You may use logical reasoning or manipulatives such as a ruler, Cuisenaire rods, or centimeter cubes to help you solve the mystery. Then calculate and record the total perimeter of each polygon.

Imagine the polygon divided into rectangles. What is the length of each segment?

Mystery Perimeters Demo Answers

Detective Dave discovered the sketches below and needs to find the perimeter of each polygon. However, some of the dimensions are not labeled. Can you help him find the missing dimensions? You may use logical reasoning or manipulatives such as a ruler, Cuisenaire rods, or centimeter cubes to help you solve the mystery. Then calculate and record the total perimeter of each polygon.

\qquad

Detective Dave discovered the sketches below and needs to find the perimeter of each polygon. However, some of the dimensions are not labeled. Can you help him find the missing dimensions? You may use logical reasoning or manipulatives such as a ruler, Cuisenaire rods, or centimeter cubes to help you solve the mystery. Then calculate and record the total perimeter of each polygon.

\qquad

Detective Dave discovered the sketches below and needs to find the perimeter of each polygon. However, some of the dimensions are not labeled. Can you help him find the missing dimensions? You may use logical reasoning or manipulatives such as a ruler, Cuisenaire rods, or centimeter cubes to help you solve the mystery. Then calculate and record the total perimeter of each polygon.

Exploring Perimeter

Finding Formulas

CCSS 3.MD.D. 8 and 4.MD.A. 3

Targeted Skill

Developing and applying the formulas for finding the perimeters of squares and rectangles

Overview

Finding Formulas is a multi-part lesson, so it may take more than one day to complete the activities. This lesson was designed as a teacher-directed, hands-on lesson to help students develop an understanding of formulas for the perimeter of a square or rectangle.

Directions

1. Seat students in teams of three or four and give each person a copy of Finding Formulas 1 and a sheet of centimeter grid paper or graph paper. Display a copy of the assignment page for the class to view.
2. Explain each part of the activity step-by-step, and have students complete that step immediately after you describe it. (Refer to the sample student responses o page 50 for possible answers.)
3. Next, introduce the activities on Finding Formulas 2 and have students complete each step after you explain it.
4. Display the Learning to Use Formulas Demo and work through the problems together, one at a time. Show students how to write an equation to find the perimeter of each polygon.
5. Finally, assign the Perimeter Formula Practice worksheet. Have students complete the assignment alone or by taking turns with a partner

Extension Activity

Tangram Perimeter Formulas - Students can create formulas for each of the seven tangram pieces. Shapes include a parallelogram, a square, and five isosceles triangles.

Answers

Possible student answers are shown on pages $50,52,54$, and 56.
\qquad

Finding Formulas 1 Perimeters of Squares

Outline a Square

1. Work with a team of three or four students. Each person folds a sheet of grid paper in half. On the top half, outline one square of any size. Each student should have a different-sized square.
2. Count or measure to find the lengths of the sides of your square. Label each side with its length. Record its perimeter inside the square.

Record Dimensions

1. Record the lengths of each side of your square on the first row of the chart under the 5 .
2. Record the perimeter of your square in the first box in the Perimeter column.
3. Record the data for your teammates' squares on the remaining rows.

Analyze Data

1. Study the data table. What patterns do you see?
2. If you are given thelength of one side of any square how can you find its perimeter? Explain:

- Square Perimeters

 Data Table| Side Lengths
 S | Perimeter
 P |
| :--- | :---: |
| | |
| | |
| | |
| | |
| | |

Write Formulas

1. When you write this as an algebraic equation, it's called a formula.
2. Use the letter S to stand for the length of each side and P to stand for the perimeter. On the lines below, write the formula for the perimeter of a square two ways. (Hint: One way uses addition and the other uses multiplication.)

Finding Formulas 1 Perimeters of Squares

Outline a Square

1. Work with a team of three or four students. Each person folds a sheet of grid paper in half. On the top half, outline one square of any size. Each student should have a different-sized square.
2. Count or measure to find the lengths of the sides of your square. Label each side with its length. Record its perimeter inside the square.

Record Dimensions

1. Record the lengths of each side of your squate on the first row of the chart under the $\$$.
2. Record the perimeter of your square in the first box in the Perimeter column.
3. Record the data for your teanmates' squares on the remaining rows.

Analyze Data

1. Study the data table. What patterns do you see?
2. If you are given the vength of one side of any square how can you find its perimeter? Explain:

You can add all four sides or multiply the

 length of one side by 4 since all sides are the equal in length.(D) Square Perimeters Data Table

Side Lengths S	Perimeter P
4 cm	16 cm
10 cm	40 cm
7 cm	28 cm
9 cm	36 cm

Write Formulas

1. When you write this as an algebraic equation, it's called a formula.
2. Use the letter S to stand for the length of each side and P to stand for the perimeter. On the lines below, write the formula for the perimeter of a square two ways. (Hint: One way uses addition and the other uses multiplication.)

$$
S+S+S+S=P
$$

$$
4 \times S=P, S \times 4=P, \text { or } 4 S=P
$$

$$
\text { or } P=S+S+S+S
$$

May also be written with P on the left

\qquad

Finding Formulas 2

 Perimeters of Rectangles
Outline a Rectangle

1. On the bottom half of the grid paper you used for the square, outline one rectangle of any size. Each student on your team should have a different-sized rectangle.
2. Count or measure to find the length and width of the sides of your rectangle. Label each side with its length. Record its perimeter inside the square.

Record Dimensions

1. Record the length and width of your rectangle on the first row of the chart.
2. Record the perimeter of your rectangle in the first box in the Perimeter column.
3. Record the data for your teammates' rectangles on the remaining rows.

Analyze Data

1. Study the data table. What patterns do you see?
2. If you are given thelength and width of any rectangle, how ean you find its perimeter?

- Rectangular Perimeters

Data Table

Length L	Width W	Perimeter P

Write Formulas

1. When you write this as an algebraic equation, it's called a formula.
2. Use the letter L to stand for the length, W to stand for the width, and P to stand for the perimeter. On the lines below, write the formula for the perimeter of a rectangle two ways.

Finding Formulas 2

 Perimeters of Rectangles
Outline a Rectangle

1. On the bottom half of the grid paper you used for the square, outline one rectangle of any size. Each student on your team should have a different-sized rectangle.
2. Count or measure to find the length and width of the sides of your rectangle. Label each side with its length. Record its perimeter inside the square.

Record Dimensions

1. Record the length and width of your rectangle on the first row of the chart.

2. Record the perimeter of your rectangle in the first box in the Perimeter column.
3. Record the data for your teammates' rectangles on the remaining rows.

Analyze Data

1. Study the data table. What patterns do you see?
2. If you are given thelength and width of any rectangle how an you find its perimeter?

You can add all four sides or add the length

Rectangular Perimeters
Data Table

Length L	Width W	Perimeter P
4 cm	6 cm	20 cm
10 cm	15 cm	50 cm
7 cm	5 cm	24 cm
8 cm	6 cm	28 cm

and width and double the total. Or you can
multiply the length and width by two and add those numbers.

Write Formulas

1. When you write this as an algebraic equation, it's called a formula.
2. Use the letter L to stand for the length, W to stand for the width, and P to stand for the perimeter. On the lines below, write the formula for the perimeter of a rectangle two ways.
$\frac{L+W+L+W=P}{\text { or } P=L+L+W+W} \quad \frac{2 L+2 W=P \text { or } 2 \times L+2 \times W=P}{\text { Advanced: } 2(L+W)=P}$

Learning to Use Formulas Demo

 Squares and RectanglesPractice what you learned by writing an equation to help you find the perimeter for each polygon. Then solve the equation and write the perimeter on the line.

Learning to Use Formulas Demo

Practice what you learned by writing an equation to help you find the perimeter for each polygon. Then solve the equation and write the perimeter on the line.

\qquad

Squares and Rectangles

Use a formula for finding the perimeter to write an equation below each rectangle or square. Then solve the equation to find the perimeter of each polygon and write it on the line.

Equation \qquad

6

Equation \qquad Equation \qquad

Squares and Rectangles

Use a formula for finding the perimeter to write an equation below each rectangle or square. Then solve the equation to find the perimeter of each polygon and write it on the line.

2

Equation

$$
\frac{P=5+5+10+10}{\text { or } P=(2 \times 5)+(2 \times 10)}
$$

Equation \qquad Equation \qquad Advanced $P=2(4+5)$

Perimeter Problems

Targeted Skill

Solving word problems that require application of perimeter concepts

Overview

Perimeter Problems give students an opportunity to solve real word problems using perimeter concepts. There are two variations of the problem-solving page; Perimeter Problems 1 uses customary measurement units and Perimeter Problems 2 uses the metric system.

Directions

You can use the problem solving pages in a variety of ways. Here are a few suggestions to get you started:

- Daily Problem Solving - Give each student a worksheet, but have them complete just one problem a day. Collect papers daily and check answer to each problem right away. Review the answer with the c allowing students to complete the next problem.
- Math Buddy Chat - Give each student a worksheet, but have them work each problem using Math Buddy Chat, a method that requires students to alternately work problems and discuss them with a partner. You can download the directions in PowerPoint format from www.lauracandler.com.
- Mix-Freeze-Pair - Display one problem on a Whiteboard or projector for the class. Ask students to nix around the room, freeze, and then pair with a partner. Students work the problem individually on dry erase boards or paper and then check the answer with their partner. Discuss answers as a class, then post a new problem. Repeat the process for each problem.

Extensions

- Brainstorming Perimeter Uses - Ask your students to brainstorm a list of situations that involve finding perimeter. Topics include building fences, measuring wood for a picture frame, buying wooden trim to go around the edge of a room.
- Creating Perimeter Problems - Have students work with a partner to create a perimeter word problem and its solution. Students switch problems with classmates and solve them.

Answers

- Perimeter Problems 1 (page 58) \#1-28 ft, \#2-20 ft, \#3-4 yd, \#4-3 yd
- Perimeter Problems 2 (page 59) \#1-84 cm, \#2-400 cm or 4 m , \#3-6 m, \#4-4 m
\qquad

Draw a picture to help you solve each of the problems below and write each answer on the line below it. Be sure to label your illustrations to show how you solved each problem.

1. Greg wants to put a fence around his square garden. It measures 7 feet on each side.
How much fence material should he buy?

Answer:

3. Thomas knows that the perimeter of his bedroom is 18 yards. If the length of the room is 5 yards, what is its width?

Answer: \qquad Answer: \qquad
\qquad
Metric Measurement
Draw a picture to help you solve each of the problems below and write each answer on the line below it. Be sure to label your illustrations to show how you solved each problem.

1. A picture frame has a length of 18 cm and a width of 24 cm . What is the perimeter of the frame?
2. Sharon needs to buy lace to trim the edge of a baby blanket. If the blanket is 80 cm by 120 cm , how much lace should she buy?

Answer:

3. Mr. McDonald's living roomhas a perimeter of 22 meters. If the length of the room is 5 meters, what is its width?

\qquad

Answer:

\qquad

Half 1nch Grid \qquad

													1	\|
													\|	\|
								V						

\qquad

Centimeter Grid \qquad

												\cdots
										-	0	1
									0	-		
)			
							N	\cdots				
							\checkmark					
		3										
\checkmark												

Teachins
 Laura Candler's TpT Store

If you enjoyed the materials in this teaching resources pack, you might also enjoy these ebooks and lessons. You can purchase them from my store on TeachersPayTeachers.com by clicking the links below or by visiting my Teaching Resources website: www.lauracandler.com.

Classroom Book Clubs

Character Bio Reports
Analyzing Character Traits
Powerful Poetry Combo
Plural Noun Showdown
Sentence Go Round
Writing Powerful Poetry
Customary Measurement
Conversions

Geometry: Exploring the Basics
Math Stations for Middle Grades (3-8)

Polygon Explorations

Talking Sticks Discussions (CCSS Aligned)
Teaching Multiple Intelligence Theory
Place Value Spinner Games
Fraction Spinner Games
Simplify and Snap Fraction Game Order of Operations Bingo

February (Free!)
March
April

Teaching Resources Website www.lauracandler.com

Ready-to-Use Resources for Teachers!

- Free printables and activity sheets
- Lesson plans and teaching strategies
- Cooperative learning methods
- Classroom management and motivation
- Literacy \& Reading Workshop strategies
- Mathematics instructional resources
- Candler's Classroom Connections Newsletters

Connect and Share

 www.facebook.com/TeachingResources www.pinterest.com/lauracandler www.corkboardconnections.com

Discover Laura's Teaching Resources . . .

DigitaléBooks and lessons you can download from www.lauracandler.com and print or use on a Smartboard!

- Each book, ebook or lesson pack includes ready-to-use directions, printables, and teaching tips!
- Popular titles include:
- Mastering Math Facts
- Daily Math Puzzler Series
- Math Stations for Middle Grades
- Power Reading Workshop

- Graphic Organizers Aligned with the Common Core

